Assumptions:
TeX:
B_{n + a} \equiv B_{n} \pmod {m}\; \text{ where } a = \begin{cases} 3, & m = 2\\13, & m = 3\\12, & m = 4\\781, & m = 5\\39, & m = 6\\ \end{cases}
n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; m \in \{2, 3, \ldots, 6\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| BellNumber | Bell number | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| Range | Integers between given endpoints |
Source code for this entry:
Entry(ID("a4d6fc"),
Formula(Where(CongruentMod(BellNumber(Add(n, a)), BellNumber(n), m), Equal(a, Cases(Tuple(3, Equal(m, 2)), Tuple(13, Equal(m, 3)), Tuple(12, Equal(m, 4)), Tuple(781, Equal(m, 5)), Tuple(39, Equal(m, 6)))))),
Variables(n, m),
Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(m, Range(2, 6)))))