Assumptions:
TeX:
\psi\!\left(z\right) = -\gamma + \int_{0}^{1} \frac{1 - {t}^{z - 1}}{1 - t} \, dt
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| DigammaFunction | Digamma function | |
| ConstGamma | The constant gamma (0.577...) | |
| Integral | Integral | |
| Pow | Power | |
| CC | Complex numbers | |
| Re | Real part |
Source code for this entry:
Entry(ID("a4cc3b"),
Formula(Equal(DigammaFunction(z), Add(Neg(ConstGamma), Integral(Div(Sub(1, Pow(t, Sub(z, 1))), Sub(1, t)), For(t, 0, 1))))),
Variables(z),
Assumptions(And(Element(z, CC), Greater(Re(z), 0))))