Assumptions:
TeX:
\gamma_{n}\!\left(a\right) = -\frac{\pi}{2 \left(n + 1\right)} \int_{0}^{\infty} \frac{\log^{n + 1}\!\left(a - \frac{1}{2} + i x\right) + \log^{n + 1}\!\left(a - \frac{1}{2} - i x\right)}{\cosh^{2}\!\left(\pi x\right)} \, dx
n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) > \frac{1}{2}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| StieltjesGamma | Stieltjes constant | |
| Pi | The constant pi (3.14...) | |
| Integral | Integral | |
| Pow | Power | |
| Log | Natural logarithm | |
| ConstI | Imaginary unit | |
| Infinity | Positive infinity | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers | |
| Re | Real part |
Source code for this entry:
Entry(ID("a41c92"),
Formula(Equal(StieltjesGamma(n, a), Neg(Mul(Div(Pi, Mul(2, Add(n, 1))), Integral(Div(Add(Pow(Log(Add(Sub(a, Div(1, 2)), Mul(ConstI, x))), Add(n, 1)), Pow(Log(Sub(Sub(a, Div(1, 2)), Mul(ConstI, x))), Add(n, 1))), Pow(Cosh(Mul(Pi, x)), 2)), For(x, 0, Infinity)))))),
Variables(n, a),
Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(a, CC), Greater(Re(a), Div(1, 2)))))