Fungrim home page

Fungrim entry: a41c92

γn ⁣(a)=π2(n+1)0logn+1 ⁣(a12+ix)+logn+1 ⁣(a12ix)cosh2 ⁣(πx)dx\gamma_{n}\!\left(a\right) = -\frac{\pi}{2 \left(n + 1\right)} \int_{0}^{\infty} \frac{\log^{n + 1}\!\left(a - \frac{1}{2} + i x\right) + \log^{n + 1}\!\left(a - \frac{1}{2} - i x\right)}{\cosh^{2}\!\left(\pi x\right)} \, dx
Assumptions:nZ0  and  aC  and  Re(a)>12n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) > \frac{1}{2}
TeX:
\gamma_{n}\!\left(a\right) = -\frac{\pi}{2 \left(n + 1\right)} \int_{0}^{\infty} \frac{\log^{n + 1}\!\left(a - \frac{1}{2} + i x\right) + \log^{n + 1}\!\left(a - \frac{1}{2} - i x\right)}{\cosh^{2}\!\left(\pi x\right)} \, dx

n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) > \frac{1}{2}
Definitions:
Fungrim symbol Notation Short description
StieltjesGammaγn ⁣(a)\gamma_{n}\!\left(a\right) Stieltjes constant
Piπ\pi The constant pi (3.14...)
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Powab{a}^{b} Power
Loglog(z)\log(z) Natural logarithm
ConstIii Imaginary unit
Infinity\infty Positive infinity
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
CCC\mathbb{C} Complex numbers
ReRe(z)\operatorname{Re}(z) Real part
Source code for this entry:
Entry(ID("a41c92"),
    Formula(Equal(StieltjesGamma(n, a), Neg(Mul(Div(Pi, Mul(2, Add(n, 1))), Integral(Div(Add(Pow(Log(Add(Sub(a, Div(1, 2)), Mul(ConstI, x))), Add(n, 1)), Pow(Log(Sub(Sub(a, Div(1, 2)), Mul(ConstI, x))), Add(n, 1))), Pow(Cosh(Mul(Pi, x)), 2)), For(x, 0, Infinity)))))),
    Variables(n, a),
    Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(a, CC), Greater(Re(a), Div(1, 2)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC