Assumptions:
TeX:
\left(a_{n + 1}, b_{n + 1}\right) = \left(x, s y\right)\; \text{ where } x = \frac{a_{n} + b_{n}}{2},\;y = \sqrt{a_{n} b_{n}},\;s = \begin{cases} +1, & y = 0 \;\mathbin{\operatorname{or}}\; \operatorname{Re}\!\left(\frac{x}{y}\right) \ge 0\\-1, & \text{otherwise}\\ \end{cases}\; \text{ where } \left(a_{k}, b_{k}\right) = \operatorname{agm}_{k}\!\left(a, b\right) n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sqrt | Principal square root | |
Re | Real part | |
AGMSequence | Convergents in AGM iteration | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("a2b0f9"), Formula(Where(Equal(Tuple(a_(Add(n, 1)), b_(Add(n, 1))), Where(Tuple(x, Mul(s, y)), Def(x, Div(Add(a_(n), b_(n)), 2)), Def(y, Sqrt(Mul(a_(n), b_(n)))), Def(s, Cases(Tuple(Pos(1), Or(Equal(y, 0), GreaterEqual(Re(Div(x, y)), 0))), Tuple(Neg(1), Otherwise))))), Def(Tuple(a_(k), b_(k)), AGMSequence(k, a, b)))), Variables(n, a, b), Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(a, CC), Element(b, CC))))