Fungrim home page

Fungrim entry: a2b0f9

(an+1,bn+1)=(x,sy)   where x=an+bn2,  y=anbn,  s={+1,y=0  or  Re ⁣(xy)01,otherwise   where (ak,bk)=agmk ⁣(a,b)\left(a_{n + 1}, b_{n + 1}\right) = \left(x, s y\right)\; \text{ where } x = \frac{a_{n} + b_{n}}{2},\;y = \sqrt{a_{n} b_{n}},\;s = \begin{cases} +1, & y = 0 \;\mathbin{\operatorname{or}}\; \operatorname{Re}\!\left(\frac{x}{y}\right) \ge 0\\-1, & \text{otherwise}\\ \end{cases}\; \text{ where } \left(a_{k}, b_{k}\right) = \operatorname{agm}_{k}\!\left(a, b\right)
Assumptions:nZ0  and  aC  and  bCn \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C}
TeX:
\left(a_{n + 1}, b_{n + 1}\right) = \left(x, s y\right)\; \text{ where } x = \frac{a_{n} + b_{n}}{2},\;y = \sqrt{a_{n} b_{n}},\;s = \begin{cases} +1, & y = 0 \;\mathbin{\operatorname{or}}\; \operatorname{Re}\!\left(\frac{x}{y}\right) \ge 0\\-1, & \text{otherwise}\\ \end{cases}\; \text{ where } \left(a_{k}, b_{k}\right) = \operatorname{agm}_{k}\!\left(a, b\right)

n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
Sqrtz\sqrt{z} Principal square root
ReRe(z)\operatorname{Re}(z) Real part
AGMSequenceagmn ⁣(a,b)\operatorname{agm}_{n}\!\left(a, b\right) Convergents in AGM iteration
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("a2b0f9"),
    Formula(Where(Equal(Tuple(a_(Add(n, 1)), b_(Add(n, 1))), Where(Tuple(x, Mul(s, y)), Def(x, Div(Add(a_(n), b_(n)), 2)), Def(y, Sqrt(Mul(a_(n), b_(n)))), Def(s, Cases(Tuple(Pos(1), Or(Equal(y, 0), GreaterEqual(Re(Div(x, y)), 0))), Tuple(Neg(1), Otherwise))))), Def(Tuple(a_(k), b_(k)), AGMSequence(k, a, b)))),
    Variables(n, a, b),
    Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(a, CC), Element(b, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC