Assumptions:
TeX:
\psi\!\left(z\right) = -\frac{1}{z} - \gamma + \sum_{n=1}^{\infty} {\left(-1\right)}^{n + 1} \zeta\!\left(n + 1\right) {z}^{n} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|z\right| < 1
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
DigammaFunction | Digamma function | |
ConstGamma | The constant gamma (0.577...) | |
Sum | Sum | |
Pow | Power | |
RiemannZeta | Riemann zeta function | |
Infinity | Positive infinity | |
CC | Complex numbers | |
Abs | Absolute value |
Source code for this entry:
Entry(ID("a2675b"), Formula(Equal(DigammaFunction(z), Add(Sub(Neg(Div(1, z)), ConstGamma), Sum(Mul(Mul(Pow(-1, Add(n, 1)), RiemannZeta(Add(n, 1))), Pow(z, n)), For(n, 1, Infinity))))), Variables(z), Assumptions(And(Element(z, CC), Less(Abs(z), 1))))