Assumptions:
TeX:
\frac{d^{r}}{{d z}^{r}} \theta_{j}\!\left(z , \tau\right) = \theta^{(r)}_{j}\!\left(z , \tau\right)
j \in \left\{1, 2, 3, 4\right\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ComplexDerivative | Complex derivative | |
| JacobiTheta | Jacobi theta function | |
| CC | Complex numbers | |
| HH | Upper complex half-plane | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("a222ed"),
Formula(Equal(ComplexDerivative(JacobiTheta(j, z, tau), For(z, z, r)), JacobiTheta(j, z, tau, r))),
Variables(j, z, tau, r),
Assumptions(And(Element(j, Set(1, 2, 3, 4)), Element(z, CC), Element(tau, HH), Element(r, ZZGreaterEqual(0)))))