Assumptions:
TeX:
R_{-a}\!\left(\left[\underbrace{\beta, \ldots, \beta}_{n \text{ times}}\right], \left[z_{1}, z_{2}, \ldots, z_{n}\right]\right) = {A}^{-a} \sum_{N=0}^{\infty} \frac{\left(a\right)_{N}}{\left(n \beta\right)_{N}} T_{N}\!\left(\left[\underbrace{\beta, \ldots, \beta}_{n \text{ times}}\right], \left[1 - \frac{z_{1}}{A}, 1 - \frac{z_{2}}{A}, \ldots, 1 - \frac{z_{n}}{A}\right]\right)\; \text{ where } A = \frac{1}{n} \sum_{k=1}^{n} z_{k} a \in \mathbb{R} \;\mathbin{\operatorname{and}}\; \beta \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \left(z_{k} \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|1 - \frac{n z_{k}}{\sum_{j=1}^{n} z_{j}}\right| < 1 \;\text{ for all } k \in \{1, 2, \ldots, n\}\right) \;\mathbin{\operatorname{and}}\; \left(\operatorname{Re}\!\left(z_{k}\right) > 0 \;\text{ for all } k \in \{1, 2, \ldots, n\}\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
CarlsonHypergeometricR | Carlson multivariate hypergeometric function | |
Pow | Power | |
Sum | Sum | |
RisingFactorial | Rising factorial | |
CarlsonHypergeometricT | Term in expansion of Carlson multivariate hypergeometric function | |
Infinity | Positive infinity | |
RR | Real numbers | |
OpenInterval | Open interval | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers | |
Abs | Absolute value | |
Range | Integers between given endpoints | |
Re | Real part |
Source code for this entry:
Entry(ID("a21395"), Formula(Where(Equal(CarlsonHypergeometricR(Neg(a), List(Repeat(beta, n)), List(z_(k), For(k, 1, n))), Mul(Pow(A, Neg(a)), Sum(Mul(Div(RisingFactorial(a, N), RisingFactorial(Mul(n, beta), N)), CarlsonHypergeometricT(N, List(Repeat(beta, n)), List(Sub(1, Div(z_(k), A)), For(k, 1, n)))), For(N, 0, Infinity)))), Def(A, Mul(Div(1, n), Sum(z_(k), For(k, 1, n)))))), Variables(a, beta, z_, n), Assumptions(And(Element(a, RR), Element(beta, OpenInterval(0, Infinity)), Element(n, ZZGreaterEqual(1)), All(And(Element(z_(k), CC), Less(Abs(Sub(1, Div(Mul(n, z_(k)), Sum(z_(j), For(j, 1, n))))), 1)), ForElement(k, Range(1, n))), All(Greater(Re(z_(k)), 0), ForElement(k, Range(1, n))))))