Assumptions:
TeX:
R_D\!\left(\lambda, x + \lambda, y + \lambda\right) + R_D\!\left(\mu, x + \mu, y + \mu\right) = R_D\!\left(0, x, y\right) - \frac{3}{y \sqrt{x + y + \lambda + \mu}}\; \text{ where } \mu = \frac{x y}{\lambda} x \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; \lambda \in \mathbb{C} \setminus \left(-\infty, 0\right]
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
CarlsonRD | Degenerate Carlson symmetric elliptic integral of the third kind | |
Sqrt | Principal square root | |
OpenInterval | Open interval | |
Infinity | Positive infinity | |
CC | Complex numbers | |
OpenClosedInterval | Open-closed interval |
Source code for this entry:
Entry(ID("a203e9"), Formula(Where(Equal(Add(CarlsonRD(lamda, Add(x, lamda), Add(y, lamda)), CarlsonRD(mu, Add(x, mu), Add(y, mu))), Sub(CarlsonRD(0, x, y), Div(3, Mul(y, Sqrt(Add(Add(Add(x, y), lamda), mu)))))), Def(mu, Div(Mul(x, y), lamda)))), Variables(x, y, lamda), Assumptions(And(Element(x, OpenInterval(0, Infinity)), Element(y, OpenInterval(0, Infinity)), Element(lamda, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))))))