Assumptions:
TeX:
\eta\!\left(\tau + \frac{1}{2}\right) = {e}^{\pi i / 24} \frac{\eta^{3}\!\left(2 \tau\right)}{\eta(\tau) \eta\!\left(4 \tau\right)}
\tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| DedekindEta | Dedekind eta function | |
| Exp | Exponential function | |
| Pi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| Pow | Power | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("a1a3d4"),
Formula(Equal(DedekindEta(Add(tau, Div(1, 2))), Mul(Exp(Div(Mul(Pi, ConstI), 24)), Div(Pow(DedekindEta(Mul(2, tau)), 3), Mul(DedekindEta(tau), DedekindEta(Mul(4, tau))))))),
Variables(tau),
Assumptions(Element(tau, HH)))