Assumptions:
TeX:
\eta\!\left(\tau + \frac{1}{2}\right) = {e}^{\pi i / 24} \frac{\eta^{3}\!\left(2 \tau\right)}{\eta(\tau) \eta\!\left(4 \tau\right)} \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
DedekindEta | Dedekind eta function | |
Exp | Exponential function | |
Pi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
Pow | Power | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("a1a3d4"), Formula(Equal(DedekindEta(Add(tau, Div(1, 2))), Mul(Exp(Div(Mul(Pi, ConstI), 24)), Div(Pow(DedekindEta(Mul(2, tau)), 3), Mul(DedekindEta(tau), DedekindEta(Mul(4, tau))))))), Variables(tau), Assumptions(Element(tau, HH)))