Assumptions:
TeX:
I_{x}\!\left(a, b\right) = \frac{1}{\mathrm{B}\!\left(a, b\right)} \int_{0}^{x} {t}^{a - 1} {\left(1 - t\right)}^{b - 1} \, dt
x \in \left[0, 1\right] \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) > 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(b) > 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| IncompleteBetaRegularized | Regularized incomplete beta function | |
| BetaFunction | Beta function | |
| Integral | Integral | |
| Pow | Power | |
| ClosedInterval | Closed interval | |
| CC | Complex numbers | |
| Re | Real part |
Source code for this entry:
Entry(ID("a1941b"),
Formula(Equal(IncompleteBetaRegularized(x, a, b), Mul(Div(1, BetaFunction(a, b)), Integral(Mul(Pow(t, Sub(a, 1)), Pow(Sub(1, t), Sub(b, 1))), For(t, 0, x))))),
Variables(x, a, b),
Assumptions(And(Element(x, ClosedInterval(0, 1)), Element(a, CC), Element(b, CC), Greater(Re(a), 0), Greater(Re(b), 0))))