Assumptions:
TeX:
\frac{\theta_{3}\!\left(0 , \tau\right)}{\theta_{4}\!\left(0 , \tau\right)} = \prod_{n=1}^{\infty} {\left(\frac{1 + {q}^{2 n - 1}}{1 - {q}^{2 n - 1}}\right)}^{2}\; \text{ where } q = {e}^{\pi i \tau} \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
Product | Product | |
Pow | Power | |
Infinity | Positive infinity | |
Exp | Exponential function | |
Pi | The constant pi (3.14...) | |
ConstI | Imaginary unit | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("a0ba58"), Formula(Equal(Div(JacobiTheta(3, 0, tau), JacobiTheta(4, 0, tau)), Where(Product(Pow(Div(Add(1, Pow(q, Sub(Mul(2, n), 1))), Sub(1, Pow(q, Sub(Mul(2, n), 1)))), 2), For(n, 1, Infinity)), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau)))))), Variables(tau), Assumptions(Element(tau, HH)))