Assumptions:
TeX:
\theta_{2}\!\left(2 z , 4 \tau\right) = \frac{\theta_{3}\!\left(z , \tau\right) - \theta_{4}\!\left(z , \tau\right)}{2} z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
CC | Complex numbers | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("a0a1ee"), Formula(Equal(JacobiTheta(2, Mul(2, z), Mul(4, tau)), Div(Sub(JacobiTheta(3, z, tau), JacobiTheta(4, z, tau)), 2))), Variables(z, tau), Assumptions(And(Element(z, CC), Element(tau, HH))))