Assumptions:
TeX:
\int_{M / 2}^{N / 2} \theta_{4}\!\left(x , \tau\right) \, dx = \frac{N - M}{2} \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; M \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Integral | Integral | |
JacobiTheta | Jacobi theta function | |
HH | Upper complex half-plane | |
ZZ | Integers |
Source code for this entry:
Entry(ID("a0955b"), Formula(Equal(Integral(JacobiTheta(4, x, tau), For(x, Div(M, 2), Div(N, 2))), Div(Sub(N, M), 2))), Variables(tau, M, N), Assumptions(And(Element(tau, HH), Element(M, ZZ), Element(N, ZZ))))