Assumptions:
Menon's identity
TeX:
\varphi(n) \sigma_{0}\!\left(n\right) = \sum_{k=1}^{n} \begin{cases} \gcd\!\left(n, k - 1\right), & \gcd\!\left(n, k\right) = 1\\0, & \text{otherwise}\\ \end{cases} n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Totient | Euler totient function | |
DivisorSigma | Sum of divisors function | |
Sum | Sum | |
GCD | Greatest common divisor | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("a08583"), Formula(Equal(Mul(Totient(n), DivisorSigma(0, n)), Sum(Cases(Tuple(GCD(n, Sub(k, 1)), Equal(GCD(n, k), 1)), Tuple(0, Otherwise)), For(k, 1, n)))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(0))), Description("Menon's identity"))