Assumptions:
TeX:
\sum_{d \mid n} \varphi(d) \sigma_{k}\!\left(\frac{n}{d}\right) = n \sigma_{k - 1}\!\left(n\right) k \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
DivisorSum | Sum over divisors | |
Totient | Euler totient function | |
DivisorSigma | Sum of divisors function | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("a05466"), Formula(Equal(DivisorSum(Mul(Totient(d), DivisorSigma(k, Div(n, d))), For(d, n)), Mul(n, DivisorSigma(Sub(k, 1), n)))), Variables(k, n), Assumptions(And(Element(k, ZZGreaterEqual(1)), Element(n, ZZGreaterEqual(0)))))