TeX:
\left(\operatorname{RH}\right) \iff \left(\operatorname{Re}(s) = \frac{1}{2} \;\text{ for all } s \in \mathbb{C} \text{ with } 0 \le \operatorname{Re}(s) \le 1 \;\mathbin{\operatorname{and}}\; \zeta\!\left(s\right) = 0\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
RiemannHypothesis | Riemann hypothesis | |
Re | Real part | |
CC | Complex numbers | |
RiemannZeta | Riemann zeta function |
Source code for this entry:
Entry(ID("9fa2a1"), Formula(Equivalent(RiemannHypothesis, All(Equal(Re(s), Div(1, 2)), ForElement(s, CC), And(LessEqual(0, Re(s), 1), Equal(RiemannZeta(s), 0))))))