Assumptions:
TeX:
\psi\!\left(z + n\right) = \psi\!\left(z\right) + \sum_{k=0}^{n - 1} \frac{1}{z + k}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}_{\ge 0}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| DigammaFunction | Digamma function | |
| Sum | Sum | |
| CC | Complex numbers | |
| ZZLessEqual | Integers less than or equal to n | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("9f32fe"),
Formula(Equal(DigammaFunction(Add(z, n)), Add(DigammaFunction(z), Sum(Div(1, Add(z, k)), For(k, 0, Sub(n, 1)))))),
Variables(z, n),
Assumptions(And(Element(z, CC), NotElement(z, ZZLessEqual(0)), Element(n, ZZGreaterEqual(0)))))