Assumptions:
TeX:
\eta\!\left(\frac{a \tau + b}{c \tau + d}\right) = \varepsilon\!\left(a, b, c, d\right) {\left(c \tau + d\right)}^{1 / 2} \eta(\tau)
\tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{PSL}_2(\mathbb{Z})Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| DedekindEta | Dedekind eta function | |
| DedekindEtaEpsilon | Root of unity in the functional equation of the Dedekind eta function | |
| Pow | Power | |
| HH | Upper complex half-plane | |
| Matrix2x2 | Two by two matrix | |
| PSL2Z | Modular group (canonical representatives) |
Source code for this entry:
Entry(ID("9f19c1"),
Formula(Equal(DedekindEta(Div(Add(Mul(a, tau), b), Add(Mul(c, tau), d))), Mul(Mul(DedekindEtaEpsilon(a, b, c, d), Pow(Add(Mul(c, tau), d), Div(1, 2))), DedekindEta(tau)))),
Variables(tau, a, b, c, d),
Assumptions(And(Element(tau, HH), Element(Matrix2x2(a, b, c, d), PSL2Z))))