Assumptions:
Alternative assumptions:
TeX:
\zeta\!\left(s\right) = 2 {\left(2 \pi\right)}^{s - 1} \sin\!\left(\frac{\pi s}{2}\right) \Gamma\!\left(1 - s\right) \zeta\!\left(1 - s\right)
s \in \mathbb{C} \,\mathbin{\operatorname{and}}\, s \notin \mathbb{Z}_{\ge 1}
s \in \mathbb{C}[[x]] \,\mathbin{\operatorname{and}}\, s \notin \mathbb{Z}_{\ge 1}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| RiemannZeta | Riemann zeta function | |
| Pow | Power | |
| ConstPi | The constant pi (3.14...) | |
| Sin | Sine | |
| GammaFunction | Gamma function | |
| CC | Complex numbers | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| FormalPowerSeries | Formal power series |
Source code for this entry:
Entry(ID("9ee8bc"),
Formula(Equal(RiemannZeta(s), Mul(Mul(Mul(Mul(2, Pow(Mul(2, ConstPi), Sub(s, 1))), Sin(Div(Mul(ConstPi, s), 2))), GammaFunction(Sub(1, s))), RiemannZeta(Sub(1, s))))),
Variables(s),
Assumptions(And(Element(s, CC), NotElement(s, ZZGreaterEqual(1))), And(Element(s, FormalPowerSeries(CC, x)), NotElement(s, ZZGreaterEqual(1)))))