Assumptions:
TeX:
{U}^{(r)}_{n}(x) = \frac{\left(n + 1\right)_{r + 1} \left(n - r + 1\right)_{r}}{\left(2 r + 1\right)!!} \,{}_2F_1\!\left(r + n + 2, r - n, \frac{3}{2} + r, \frac{1 - x}{2}\right) n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left(r \le n \;\mathbin{\operatorname{or}}\; x \ne -1\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
ComplexDerivative | Complex derivative | |
ChebyshevU | Chebyshev polynomial of the second kind | |
RisingFactorial | Rising factorial | |
Hypergeometric2F1 | Gauss hypergeometric function | |
ZZ | Integers | |
ZZGreaterEqual | Integers greater than or equal to n | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("9d66de"), Formula(Equal(ComplexDerivative(ChebyshevU(n, x), For(x, x, r)), Mul(Div(Mul(RisingFactorial(Add(n, 1), Add(r, 1)), RisingFactorial(Add(Sub(n, r), 1), r)), DoubleFactorial(Add(Mul(2, r), 1))), Hypergeometric2F1(Add(Add(r, n), 2), Sub(r, n), Add(Div(3, 2), r), Div(Sub(1, x), 2))))), Variables(n, r, x), Assumptions(And(Element(n, ZZ), Element(r, ZZGreaterEqual(0)), Element(x, CC), Or(LessEqual(r, n), NotEqual(x, -1)))))