Assumptions:
TeX:
\sum_{n=0}^{\infty} B_{n} {x}^{n} = \sum_{k=0}^{\infty} \frac{{x}^{k}}{\prod_{j=1}^{k} \left(1 - j x\right)} x = 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sum | Sum | |
BellNumber | Bell number | |
Pow | Power | |
Infinity | Positive infinity | |
Product | Product |
Source code for this entry:
Entry(ID("9d666f"), Formula(Equal(Sum(Mul(BellNumber(n), Pow(x, n)), For(n, 0, Infinity)), Sum(Div(Pow(x, k), Product(Parentheses(Sub(1, Mul(j, x))), For(j, 1, k))), For(k, 0, Infinity)))), Variables(x), Assumptions(Equal(x, 0)))