Fungrim home page

Fungrim entry: 9d5c86

γ=limz0[ψ ⁣(z)+1z]\gamma = -\lim_{z \to 0} \left[\psi\!\left(z\right) + \frac{1}{z}\right]
\gamma = -\lim_{z \to 0} \left[\psi\!\left(z\right) + \frac{1}{z}\right]
Fungrim symbol Notation Short description
ConstGammaγ\gamma The constant gamma (0.577...)
ComplexLimitlimzaf(z)\lim_{z \to a} f(z) Limiting value, complex variable
DigammaFunctionψ ⁣(z)\psi\!\left(z\right) Digamma function
Source code for this entry:
    Formula(Equal(ConstGamma, Neg(ComplexLimit(Brackets(Add(DigammaFunction(z), Div(1, z))), For(z, 0))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC