TeX:
\left\{ F_{n} : n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; \sqrt{F_{n}} \in \mathbb{Z} \right\} = \left\{F_{0}, F_{1}, F_{2}, F_{12}\right\} = \left\{0, 1, 144\right\}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Fibonacci | Fibonacci number | |
ZZGreaterEqual | Integers greater than or equal to n | |
Sqrt | Principal square root | |
ZZ | Integers |
Source code for this entry:
Entry(ID("9d26d2"), Formula(Equal(Set(Fibonacci(n), For(n), And(Element(n, ZZGreaterEqual(0)), Element(Sqrt(Fibonacci(n)), ZZ))), Set(Fibonacci(0), Fibonacci(1), Fibonacci(2), Fibonacci(12)), Set(0, 1, 144))))