Assumptions:
TeX:
\wp\!\left(z, \tau\right) = \frac{1}{{z}^{2}} + \sum_{k=1}^{\infty} \left(2 k + 1\right) G_{2 k + 2}\!\left(\tau\right) {z}^{2 k}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; \left|z\right| < \operatorname{inf} \left\{ \left|s\right| : s \in \Lambda_{(1, \tau)} \setminus \left\{0\right\} \right\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| WeierstrassP | Weierstrass elliptic function | |
| Pow | Power | |
| Sum | Sum | |
| EisensteinG | Eisenstein series | |
| Infinity | Positive infinity | |
| CC | Complex numbers | |
| HH | Upper complex half-plane | |
| Abs | Absolute value | |
| Infimum | Infimum of a set or function | |
| Lattice | Complex lattice with periods a, b |
Source code for this entry:
Entry(ID("9bf0ad"),
Formula(Equal(WeierstrassP(z, tau), Add(Div(1, Pow(z, 2)), Sum(Mul(Mul(Add(Mul(2, k), 1), EisensteinG(Add(Mul(2, k), 2), tau)), Pow(z, Mul(2, k))), For(k, 1, Infinity))))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH), Less(Abs(z), Infimum(Set(Abs(s), ForElement(s, SetMinus(Lattice(1, tau), Set(0)))))))))