Fungrim home page

Fungrim entry: 9bda2f

Sj ⁣(a,b,c,d)={1,j=1T ⁣(c,d),j=2T ⁣(a+c,b+d),j=3T ⁣(a,b),j=4   where T ⁣(m,n)={1,(m,n)(0,0)(mod2)2,(m,n)(0,1)(mod2)4,(m,n)(1,0)(mod2)3,(m,n)(1,1)(mod2)S_{j}\!\left(a, b, c, d\right) = \begin{cases} 1, & j = 1\\T\!\left(c, d\right), & j = 2\\T\!\left(a + c, b + d\right), & j = 3\\T\!\left(a, b\right), & j = 4\\ \end{cases}\; \text{ where } T\!\left(m, n\right) = \begin{cases} 1, & \left(m, n\right) \equiv \left(0, 0\right) \pmod {2}\\2, & \left(m, n\right) \equiv \left(0, 1\right) \pmod {2}\\4, & \left(m, n\right) \equiv \left(1, 0\right) \pmod {2}\\3, & \left(m, n\right) \equiv \left(1, 1\right) \pmod {2}\\ \end{cases}
Assumptions:j{1,2,3,4}  and  (abcd)PSL2(Z)j \in \left\{1, 2, 3, 4\right\} \;\mathbin{\operatorname{and}}\; \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{PSL}_2(\mathbb{Z})
References:
  • Hans Rademacher (1973), Topics in Analytic Number Theory, Springer. Section 81.
TeX:
S_{j}\!\left(a, b, c, d\right) = \begin{cases} 1, & j = 1\\T\!\left(c, d\right), & j = 2\\T\!\left(a + c, b + d\right), & j = 3\\T\!\left(a, b\right), & j = 4\\ \end{cases}\; \text{ where } T\!\left(m, n\right) = \begin{cases} 1, & \left(m, n\right) \equiv \left(0, 0\right) \pmod {2}\\2, & \left(m, n\right) \equiv \left(0, 1\right) \pmod {2}\\4, & \left(m, n\right) \equiv \left(1, 0\right) \pmod {2}\\3, & \left(m, n\right) \equiv \left(1, 1\right) \pmod {2}\\ \end{cases}

j \in \left\{1, 2, 3, 4\right\} \;\mathbin{\operatorname{and}}\; \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{PSL}_2(\mathbb{Z})
Definitions:
Fungrim symbol Notation Short description
JacobiThetaPermutationSj ⁣(a,b,c,d)S_{j}\!\left(a, b, c, d\right) Index permutation in modular transformation of Jacobi theta functions
Matrix2x2(abcd)\begin{pmatrix} a & b \\ c & d \end{pmatrix} Two by two matrix
PSL2ZPSL2(Z)\operatorname{PSL}_2(\mathbb{Z}) Modular group (canonical representatives)
Source code for this entry:
Entry(ID("9bda2f"),
    Formula(Equal(JacobiThetaPermutation(j, a, b, c, d), Where(Cases(Tuple(1, Equal(j, 1)), Tuple(T(c, d), Equal(j, 2)), Tuple(T(Add(a, c), Add(b, d)), Equal(j, 3)), Tuple(T(a, b), Equal(j, 4))), Equal(T(m, n), Cases(Tuple(1, CongruentMod(Tuple(m, n), Tuple(0, 0), 2)), Tuple(2, CongruentMod(Tuple(m, n), Tuple(0, 1), 2)), Tuple(4, CongruentMod(Tuple(m, n), Tuple(1, 0), 2)), Tuple(3, CongruentMod(Tuple(m, n), Tuple(1, 1), 2))))))),
    Variables(j, a, b, c, d),
    Assumptions(And(Element(j, Set(1, 2, 3, 4)), Element(Matrix2x2(a, b, c, d), PSL2Z))),
    References("Hans Rademacher (1973), Topics in Analytic Number Theory, Springer. Section 81."))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC