Assumptions:
TeX:
\mathop{\operatorname{zeros}\,}\limits_{s \in \mathbb{C},\,\operatorname{Re}(s) \le 0} L\!\left(s, \chi\right) = \begin{cases} \left\{ -2 n : n \in \mathbb{Z}_{\ge 1} \right\}, & q = 1\\\left\{ -2 n : n \in \mathbb{Z}_{\ge 0} \right\}, & \chi(-1) = 1 \;\mathbin{\operatorname{and}}\; q \ne 1\\\left\{ -2 n - 1 : n \in \mathbb{Z}_{\ge 0} \right\}, & \chi(-1) = -1\\ \end{cases} q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G^{\text{Primitive}}_{q}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Zeros | Zeros (roots) of function | |
DirichletL | Dirichlet L-function | |
CC | Complex numbers | |
Re | Real part | |
ZZGreaterEqual | Integers greater than or equal to n | |
PrimitiveDirichletCharacters | Primitive Dirichlet characters with given modulus |
Source code for this entry:
Entry(ID("9ba78a"), Formula(Equal(Zeros(DirichletL(s, chi), ForElement(s, CC), LessEqual(Re(s), 0)), Cases(Tuple(Set(Neg(Mul(2, n)), ForElement(n, ZZGreaterEqual(1))), Equal(q, 1)), Tuple(Set(Neg(Mul(2, n)), ForElement(n, ZZGreaterEqual(0))), And(Equal(chi(-1), 1), NotEqual(q, 1))), Tuple(Set(Sub(Neg(Mul(2, n)), 1), ForElement(n, ZZGreaterEqual(0))), Equal(chi(-1), -1))))), Variables(q, chi), Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, PrimitiveDirichletCharacters(q)))))