Assumptions:
References:
- H. Rademacher, On the Phragmén-Lindelöf theorem and some applications, Mathematische Zeitschrift, December 1959, Volume 72, Issue 1, pp 192-204. Theorem 3. https://doi.org/10.1007/BF01162949
TeX:
\left|L\!\left(s, \chi\right)\right| \le {\left(\frac{q \left|1 + s\right|}{2 \pi}\right)}^{\left( 1 + \eta - \operatorname{Re}(s) \right) / 2} \zeta\!\left(1 + \eta\right)
q \in \mathbb{Z}_{\ge 2} \;\mathbin{\operatorname{and}}\; \chi \in G^{\text{Primitive}}_{q} \;\mathbin{\operatorname{and}}\; s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \eta \in \left(0, \frac{1}{2}\right] \;\mathbin{\operatorname{and}}\; -\eta \le \operatorname{Re}(s) \le 1 + \etaDefinitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Abs | Absolute value | |
| DirichletL | Dirichlet L-function | |
| Pow | Power | |
| Pi | The constant pi (3.14...) | |
| Re | Real part | |
| RiemannZeta | Riemann zeta function | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| PrimitiveDirichletCharacters | Primitive Dirichlet characters with given modulus | |
| CC | Complex numbers | |
| OpenClosedInterval | Open-closed interval |
Source code for this entry:
Entry(ID("9b3fde"),
Formula(LessEqual(Abs(DirichletL(s, chi)), Mul(Pow(Div(Mul(q, Abs(Add(1, s))), Mul(2, Pi)), Div(Sub(Add(1, eta), Re(s)), 2)), RiemannZeta(Add(1, eta))))),
Variables(q, chi, s, eta),
Assumptions(And(Element(q, ZZGreaterEqual(2)), Element(chi, PrimitiveDirichletCharacters(q)), Element(s, CC), Element(eta, OpenClosedInterval(0, Div(1, 2))), LessEqual(Neg(eta), Re(s), Add(1, eta)))),
References("H. Rademacher, On the Phragmén-Lindelöf theorem and some applications, Mathematische Zeitschrift, December 1959, Volume 72, Issue 1, pp 192-204. Theorem 3. https://doi.org/10.1007/BF01162949"))