Fungrim home page

Fungrim entry: 9b0385

Π ⁣(12,12)=(Γ ⁣(14))24π+2π3/2(Γ ⁣(14))2\Pi\!\left(\frac{1}{2}, \frac{1}{2}\right) = \frac{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}{4 \sqrt{\pi}} + \frac{2 {\pi}^{3 / 2}}{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}
TeX:
\Pi\!\left(\frac{1}{2}, \frac{1}{2}\right) = \frac{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}{4 \sqrt{\pi}} + \frac{2 {\pi}^{3 / 2}}{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{2}}
Definitions:
Fungrim symbol Notation Short description
EllipticPiΠ ⁣(n,m)\Pi\!\left(n, m\right) Legendre complete elliptic integral of the third kind
Powab{a}^{b} Power
GammaΓ(z)\Gamma(z) Gamma function
Sqrtz\sqrt{z} Principal square root
Piπ\pi The constant pi (3.14...)
Source code for this entry:
Entry(ID("9b0385"),
    Formula(Equal(EllipticPi(Div(1, 2), Div(1, 2)), Add(Div(Pow(Gamma(Div(1, 4)), 2), Mul(4, Sqrt(Pi))), Div(Mul(2, Pow(Pi, Div(3, 2))), Pow(Gamma(Div(1, 4)), 2))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC