Assumptions:
Alternative assumptions:
TeX:
J_{\nu}\!\left(z\right) = {\left(\frac{z}{2}\right)}^{\nu} \frac{{e}^{-i z}}{\Gamma\!\left(\nu + 1\right)} \,{}_1F_1\!\left(\nu + \frac{1}{2}, 2 \nu + 1, 2 i z\right)
\nu \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
\nu \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \nu \notin \{-1, -2, \ldots\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| BesselJ | Bessel function of the first kind | |
| Pow | Power | |
| Exp | Exponential function | |
| ConstI | Imaginary unit | |
| Gamma | Gamma function | |
| Hypergeometric1F1 | Kummer confluent hypergeometric function | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers | |
| ZZLessEqual | Integers less than or equal to n |
Source code for this entry:
Entry(ID("9ad254"),
Formula(Equal(BesselJ(nu, z), Mul(Mul(Pow(Div(z, 2), nu), Div(Exp(Neg(Mul(ConstI, z))), Gamma(Add(nu, 1)))), Hypergeometric1F1(Add(nu, Div(1, 2)), Add(Mul(2, nu), 1), Mul(Mul(2, ConstI), z))))),
Variables(nu, z),
Assumptions(And(Element(nu, ZZGreaterEqual(0)), Element(z, CC)), And(Element(nu, CC), NotElement(nu, ZZLessEqual(-1)), Element(z, SetMinus(CC, Set(0))))))