Assumptions:
TeX:
R_D\!\left(0, y, z\right) = 3 \int_{0}^{\pi / 2} \frac{\sin^{2}\!\left(\theta\right)}{{\left(y \cos^{2}\!\left(\theta\right) + z \sin^{2}\!\left(\theta\right)\right)}^{3 / 2}} \, d\theta y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(y) > 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
CarlsonRD | Degenerate Carlson symmetric elliptic integral of the third kind | |
Integral | Integral | |
Pow | Power | |
Sin | Sine | |
Cos | Cosine | |
Pi | The constant pi (3.14...) | |
CC | Complex numbers | |
Re | Real part |
Source code for this entry:
Entry(ID("9a0bc8"), Formula(Equal(CarlsonRD(0, y, z), Mul(3, Integral(Div(Pow(Sin(theta), 2), Pow(Add(Mul(y, Pow(Cos(theta), 2)), Mul(z, Pow(Sin(theta), 2))), Div(3, 2))), For(theta, 0, Div(Pi, 2)))))), Variables(y, z), Assumptions(And(Element(y, CC), Element(z, CC), Greater(Re(y), 0), Greater(Re(z), 0))))