Assumptions:
TeX:
\int_{z}^{\infty} {x}^{c} {e}^{-a x + b} \, dx = \frac{{e}^{b}}{{a}^{c + 1}} \Gamma\!\left(c + 1, a z\right)
a \in \mathbb{R} \;\mathbin{\operatorname{and}}\; b \in \mathbb{R} \;\mathbin{\operatorname{and}}\; c \in \mathbb{R} \;\mathbin{\operatorname{and}}\; z \in \mathbb{R} \;\mathbin{\operatorname{and}}\; a > 0 \;\mathbin{\operatorname{and}}\; c > 0 \;\mathbin{\operatorname{and}}\; z > 0Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Integral | Integral | |
| Pow | Power | |
| Exp | Exponential function | |
| Infinity | Positive infinity | |
| RR | Real numbers |
Source code for this entry:
Entry(ID("9a06fb"),
Formula(Equal(Integral(Mul(Pow(x, c), Exp(Add(Neg(Mul(a, x)), b))), For(x, z, Infinity)), Mul(Div(Exp(b), Pow(a, Add(c, 1))), UpperGamma(Add(c, 1), Mul(a, z))))),
Variables(a, b, c, z),
Assumptions(And(Element(a, RR), Element(b, RR), Element(c, RR), Element(z, RR), Greater(a, 0), Greater(c, 0), Greater(z, 0))))