Assumptions:
TeX:
W_{k}\!\left(z\right) = \sum_{n=0}^{\infty} {\mu}_{n} {v}^{n}\; \text{ where } v = -\sqrt{2 \left(e z + 1\right)}
z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|e z + 1\right| \lt 1 \,\mathbin{\operatorname{and}}\, \left(\left(k = -1 \,\mathbin{\operatorname{and}}\, \operatorname{Im}\!\left(z\right) \ge 0\right) \,\mathbin{\operatorname{or}}\, \left(k = 1 \,\mathbin{\operatorname{and}}\, \operatorname{Im}\!\left(z\right) \lt 0\right)\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| LambertW | Lambert W-function | |
| LambertWPuiseuxCoefficient | Coefficient in scaled Puiseux expansion of Lambert W-function | |
| Pow | Power | |
| Infinity | Positive infinity | |
| Sqrt | Principal square root | |
| ConstE | The constant e (2.718...) | |
| CC | Complex numbers | |
| Abs | Absolute value | |
| Im | Imaginary part |
Source code for this entry:
Entry(ID("99ff4c"),
Formula(Where(Equal(LambertW(k, z), Sum(Mul(LambertWPuiseuxCoefficient(n), Pow(v, n)), Tuple(n, 0, Infinity))), Equal(v, Neg(Sqrt(Mul(2, Add(Mul(ConstE, z), 1))))))),
Variables(k, z),
Assumptions(And(Element(z, CC), Less(Abs(Add(Mul(ConstE, z), 1)), 1), Or(And(Equal(k, -1), GreaterEqual(Im(z), 0)), And(Equal(k, 1), Less(Im(z), 0))))))