Assumptions:
TeX:
\sqrt{z - c {z}^{2}} = \sqrt{z} \sqrt{1 - c z}
z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, c \in \left[0, \infty\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Sqrt | Principal square root | |
| Pow | Power | |
| CC | Complex numbers | |
| ClosedOpenInterval | Closed-open interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("99c0b3"),
Formula(Equal(Sqrt(Sub(z, Mul(c, Pow(z, 2)))), Mul(Sqrt(z), Sqrt(Sub(1, Mul(c, z)))))),
Variables(z, c),
Assumptions(And(Element(z, CC), Element(c, ClosedOpenInterval(0, Infinity)))))