Assumptions:
TeX:
\sqrt{z - c {z}^{2}} = \sqrt{z} \sqrt{1 - c z} z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, c \in \left[0, \infty\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Sqrt | Principal square root | |
Pow | Power | |
CC | Complex numbers | |
ClosedOpenInterval | Closed-open interval | |
Infinity | Positive infinity |
Source code for this entry:
Entry(ID("99c0b3"), Formula(Equal(Sqrt(Sub(z, Mul(c, Pow(z, 2)))), Mul(Sqrt(z), Sqrt(Sub(1, Mul(c, z)))))), Variables(z, c), Assumptions(And(Element(z, CC), Element(c, ClosedOpenInterval(0, Infinity)))))