Assumptions:
TeX:
J_{n}\!\left(z\right) = \frac{1}{\pi} \int_{0}^{\pi} \cos\!\left(n t - z \sin(t)\right) \, dt
n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| BesselJ | Bessel function of the first kind | |
| Pi | The constant pi (3.14...) | |
| Integral | Integral | |
| Cos | Cosine | |
| Sin | Sine | |
| ZZ | Integers | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("99c077"),
Formula(Equal(BesselJ(n, z), Mul(Div(1, Pi), Integral(Cos(Sub(Mul(n, t), Mul(z, Sin(t)))), For(t, 0, Pi))))),
Variables(n, z),
Assumptions(And(Element(n, ZZ), Element(z, CC))))