Assumptions:
TeX:
J_{n}\!\left(z\right) = \frac{1}{\pi} \int_{0}^{\pi} \cos\!\left(n t - z \sin(t)\right) \, dt n \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
BesselJ | Bessel function of the first kind | |
Pi | The constant pi (3.14...) | |
Integral | Integral | |
Cos | Cosine | |
Sin | Sine | |
ZZ | Integers | |
CC | Complex numbers |
Source code for this entry:
Entry(ID("99c077"), Formula(Equal(BesselJ(n, z), Mul(Div(1, Pi), Integral(Cos(Sub(Mul(n, t), Mul(z, Sin(t)))), For(t, 0, Pi))))), Variables(n, z), Assumptions(And(Element(n, ZZ), Element(z, CC))))