Assumptions:
TeX:
T_{n}\!\left(x\right) = \frac{n}{2} \sum_{k=0}^{\left\lfloor n / 2 \right\rfloor} \frac{{\left(-1\right)}^{k}}{n - k} {n - k \choose k} {\left(2 x\right)}^{n - 2 k}
n \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; x \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ChebyshevT | Chebyshev polynomial of the first kind | |
| Sum | Sum | |
| Pow | Power | |
| Binomial | Binomial coefficient | |
| ZZGreaterEqual | Integers greater than or equal to n | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("99aa38"),
Formula(Equal(ChebyshevT(n, x), Mul(Div(n, 2), Sum(Mul(Mul(Div(Pow(-1, k), Sub(n, k)), Binomial(Sub(n, k), k)), Pow(Mul(2, x), Sub(n, Mul(2, k)))), For(k, 0, Floor(Div(n, 2))))))),
Variables(n, x),
Assumptions(And(Element(n, ZZGreaterEqual(1)), Element(x, CC))))