Assumptions:
TeX:
\theta_{2}\!\left(0 , \tau\right) \theta_{4}\!\left(0 , \tau\right) \theta_{2}\!\left(z + w , \tau\right) \theta_{4}\!\left(z - w , \tau\right) = \theta_{2}\!\left(z , \tau\right) \theta_{4}\!\left(z , \tau\right) \theta_{2}\!\left(w , \tau\right) \theta_{4}\!\left(w , \tau\right) - \theta_{1}\!\left(z , \tau\right) \theta_{3}\!\left(z , \tau\right) \theta_{1}\!\left(w , \tau\right) \theta_{3}\!\left(w , \tau\right) z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; w \in \tau \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
JacobiTheta | Jacobi theta function | |
CC | Complex numbers | |
HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("9973ef"), Formula(Equal(Mul(Mul(Mul(JacobiTheta(2, 0, tau), JacobiTheta(4, 0, tau)), JacobiTheta(2, Add(z, w), tau)), JacobiTheta(4, Sub(z, w), tau)), Sub(Mul(Mul(Mul(JacobiTheta(2, z, tau), JacobiTheta(4, z, tau)), JacobiTheta(2, w, tau)), JacobiTheta(4, w, tau)), Mul(Mul(Mul(JacobiTheta(1, z, tau), JacobiTheta(3, z, tau)), JacobiTheta(1, w, tau)), JacobiTheta(3, w, tau))))), Variables(z, w, tau), Assumptions(And(Element(z, CC), Element(w, tau), Element(tau, HH))))