TeX:
\lim_{N \to \infty} \frac{1}{\log(N)} \sum_{n=1}^{N} \frac{1}{\varphi(n)} = \frac{\zeta\!\left(2\right) \zeta\!\left(3\right)}{\zeta\!\left(6\right)}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
SequenceLimit | Limiting value of sequence | |
Log | Natural logarithm | |
Sum | Sum | |
Totient | Euler totient function | |
Infinity | Positive infinity | |
RiemannZeta | Riemann zeta function |
Source code for this entry:
Entry(ID("9923b7"), Formula(Equal(SequenceLimit(Mul(Div(1, Log(N)), Sum(Div(1, Totient(n)), For(n, 1, N))), For(N, Infinity)), Div(Mul(RiemannZeta(2), RiemannZeta(3)), RiemannZeta(6)))))