TeX:
\lim_{N \to \infty} \frac{1}{\log(N)} \sum_{n=1}^{N} \frac{1}{\varphi(n)} = \frac{\zeta\!\left(2\right) \zeta\!\left(3\right)}{\zeta\!\left(6\right)}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| SequenceLimit | Limiting value of sequence | |
| Log | Natural logarithm | |
| Sum | Sum | |
| Totient | Euler totient function | |
| Infinity | Positive infinity | |
| RiemannZeta | Riemann zeta function |
Source code for this entry:
Entry(ID("9923b7"),
Formula(Equal(SequenceLimit(Mul(Div(1, Log(N)), Sum(Div(1, Totient(n)), For(n, 1, N))), For(N, Infinity)), Div(Mul(RiemannZeta(2), RiemannZeta(3)), RiemannZeta(6)))))