Assumptions:
TeX:
K_{\nu}\!\left(z\right) = \frac{1}{2} \frac{\pi}{\sin\!\left(\pi \nu\right)} \left({\left(\frac{z}{2}\right)}^{-\nu} \,{}_0{\textbf F}_1\!\left(1 - \nu, \frac{{z}^{2}}{4}\right) - {\left(\frac{z}{2}\right)}^{\nu} \,{}_0{\textbf F}_1\!\left(1 + \nu, \frac{{z}^{2}}{4}\right)\right)
\nu \in \mathbb{C} \setminus \mathbb{Z} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \setminus \left\{0\right\}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| BesselK | Modified Bessel function of the second kind | |
| ConstPi | The constant pi (3.14...) | |
| Sin | Sine | |
| Pow | Power | |
| Hypergeometric0F1Regularized | Regularized confluent hypergeometric limit function | |
| CC | Complex numbers | |
| ZZ | Integers |
Source code for this entry:
Entry(ID("98703d"),
Formula(Equal(BesselK(nu, z), Mul(Mul(Div(1, 2), Div(ConstPi, Sin(Mul(ConstPi, nu)))), Sub(Mul(Pow(Div(z, 2), Neg(nu)), Hypergeometric0F1Regularized(Sub(1, nu), Div(Pow(z, 2), 4))), Mul(Pow(Div(z, 2), nu), Hypergeometric0F1Regularized(Add(1, nu), Div(Pow(z, 2), 4))))))),
Variables(nu, z),
Assumptions(And(Element(nu, SetMinus(CC, ZZ)), Element(z, SetMinus(CC, Set(0))))))