Fungrim home page

Fungrim entry: 978287

RC ⁣(x,y)3x+2yR_C\!\left(x, y\right) \ge \frac{3}{\sqrt{x} + 2 \sqrt{y}}
Assumptions:x[0,)  and  y(0,)x \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left(0, \infty\right)
R_C\!\left(x, y\right) \ge \frac{3}{\sqrt{x} + 2 \sqrt{y}}

x \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left(0, \infty\right)
Fungrim symbol Notation Short description
CarlsonRCRC ⁣(x,y)R_C\!\left(x, y\right) Degenerate Carlson symmetric elliptic integral of the first kind
Sqrtz\sqrt{z} Principal square root
ClosedOpenInterval[a,b)\left[a, b\right) Closed-open interval
Infinity\infty Positive infinity
OpenInterval(a,b)\left(a, b\right) Open interval
Source code for this entry:
    Formula(GreaterEqual(CarlsonRC(x, y), Div(3, Add(Sqrt(x), Mul(2, Sqrt(y)))))),
    Variables(x, y),
    Assumptions(And(Element(x, ClosedOpenInterval(0, Infinity)), Element(y, OpenInterval(0, Infinity)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC