Assumptions:
References:
- Jean-Pierre Massias, Jean-Louis Nicolas and Guy Robin (1989), Effective bounds for the maximal order of an element in the symmetric group, Mathematics of Computation, 53, 118, 665--665, https://doi.org/10.1090/s0025-5718-1989-0979940-4
TeX:
\log\!\left(g(n)\right) \le \sqrt{n \log(n)} \left(1 + \frac{\log\!\left(\log(n)\right) - 0.975}{2 \log(n)}\right) n \in \mathbb{Z}_{\ge 4}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
Log | Natural logarithm | |
LandauG | Landau's function | |
Sqrt | Principal square root | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("9697b8"), Formula(LessEqual(Log(LandauG(n)), Mul(Sqrt(Mul(n, Log(n))), Add(1, Div(Sub(Log(Log(n)), Decimal("0.975")), Mul(2, Log(n))))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(4))), References("Jean-Pierre Massias, Jean-Louis Nicolas and Guy Robin (1989), Effective bounds for the maximal order of an element in the symmetric group, Mathematics of Computation, 53, 118, 665--665, https://doi.org/10.1090/s0025-5718-1989-0979940-4"))