Assumptions:
TeX:
\operatorname{agm}\!\left(a, b\right) = \lim_{n \to \infty} a_{n} = \lim_{n \to \infty} b_{n}\; \text{ where } \left(a_{n}, b_{n}\right) = \operatorname{agm}_{n}\!\left(a, b\right)
a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| AGM | Arithmetic-geometric mean | |
| SequenceLimit | Limiting value of sequence | |
| Infinity | Positive infinity | |
| AGMSequence | Convergents in AGM iteration | |
| CC | Complex numbers |
Source code for this entry:
Entry(ID("95fb3e"),
Formula(Where(Equal(AGM(a, b), SequenceLimit(a_(n), For(n, Infinity)), SequenceLimit(b_(n), For(n, Infinity))), Def(Tuple(a_(n), b_(n)), AGMSequence(n, a, b)))),
Variables(a, b),
Assumptions(And(Element(a, CC), Element(b, CC))))