Assumptions:
References:
- https://arxiv.org/abs/math/0308086
TeX:
\log G\!\left(z + 1\right) = \frac{z \left(1 - z\right)}{2} + \frac{z}{2} \log\!\left(2 \pi\right) + \int_{0}^{z} x \psi\!\left(x\right) \, dx z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \left(-\infty, -1\right]
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
LogBarnesG | Logarithmic Barnes G-function | |
Log | Natural logarithm | |
Pi | The constant pi (3.14...) | |
Integral | Integral | |
DigammaFunction | Digamma function | |
CC | Complex numbers | |
OpenClosedInterval | Open-closed interval | |
Infinity | Positive infinity |
Source code for this entry:
Entry(ID("95f771"), Formula(Equal(LogBarnesG(Add(z, 1)), Add(Add(Div(Mul(z, Sub(1, z)), 2), Mul(Div(z, 2), Log(Mul(2, Pi)))), Integral(Mul(x, DigammaFunction(x)), For(x, 0, z))))), Variables(z), Assumptions(And(Element(z, CC), NotElement(z, OpenClosedInterval(Neg(Infinity), -1)))), References("https://arxiv.org/abs/math/0308086"))