Assumptions:
References:
- https://arxiv.org/abs/math/0308086
TeX:
\log G\!\left(z + 1\right) = \frac{z \left(1 - z\right)}{2} + \frac{z}{2} \log\!\left(2 \pi\right) + \int_{0}^{z} x \psi\!\left(x\right) \, dx
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \left(-\infty, -1\right]Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| LogBarnesG | Logarithmic Barnes G-function | |
| Log | Natural logarithm | |
| Pi | The constant pi (3.14...) | |
| Integral | Integral | |
| DigammaFunction | Digamma function | |
| CC | Complex numbers | |
| OpenClosedInterval | Open-closed interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("95f771"),
Formula(Equal(LogBarnesG(Add(z, 1)), Add(Add(Div(Mul(z, Sub(1, z)), 2), Mul(Div(z, 2), Log(Mul(2, Pi)))), Integral(Mul(x, DigammaFunction(x)), For(x, 0, z))))),
Variables(z),
Assumptions(And(Element(z, CC), NotElement(z, OpenClosedInterval(Neg(Infinity), -1)))),
References("https://arxiv.org/abs/math/0308086"))