Assumptions:
TeX:
\zeta^{(r)}\!\left(s, a + N\right) = \zeta^{(r)}\!\left(s, a\right) + {\left(-1\right)}^{r + 1} \sum_{k=0}^{N - 1} \frac{\log^{r}\!\left(a + k\right)}{{\left(a + k\right)}^{s}} s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; s \ne 1 \;\mathbin{\operatorname{and}}\; \left(a \notin \{0, -1, \ldots\} \;\mathbin{\operatorname{or}}\; \operatorname{Re}(s) < 0\right) \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; r \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
HurwitzZeta | Hurwitz zeta function | |
Pow | Power | |
Sum | Sum | |
Log | Natural logarithm | |
CC | Complex numbers | |
ZZLessEqual | Integers less than or equal to n | |
Re | Real part | |
ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("95e270"), Formula(Equal(HurwitzZeta(s, Add(a, N), r), Add(HurwitzZeta(s, a, r), Mul(Pow(-1, Add(r, 1)), Sum(Div(Pow(Log(Add(a, k)), r), Pow(Add(a, k), s)), For(k, 0, Sub(N, 1))))))), Variables(s, a, N, r), Assumptions(And(Element(s, CC), Element(a, CC), NotEqual(s, 1), Or(NotElement(a, ZZLessEqual(0)), Less(Re(s), 0)), Element(N, ZZGreaterEqual(1)), Element(r, ZZGreaterEqual(0)))))