Fungrim home page

Fungrim entry: 954066

sin2 ⁣(z)cos2 ⁣(z)=cos ⁣(2z)\sin^{2}\!\left(z\right) - \cos^{2}\!\left(z\right) = -\cos\!\left(2 z\right)
Assumptions:zCz \in \mathbb{C}
TeX:
\sin^{2}\!\left(z\right) - \cos^{2}\!\left(z\right) = -\cos\!\left(2 z\right)

z \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
Powab{a}^{b} Power
Sinsin(z)\sin(z) Sine
Coscos(z)\cos(z) Cosine
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("954066"),
    Formula(Equal(Sub(Pow(Sin(z), 2), Pow(Cos(z), 2)), Neg(Cos(Mul(2, z))))),
    Variables(z),
    Assumptions(Element(z, CC)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC