Assumptions:
TeX:
R_D\!\left(x, y, z\right) = \frac{3}{2} \int_{0}^{\infty} \frac{1}{\left(t + x\right) \left(t + y\right) {\left(t + z\right)}^{3 / 2}} \, dt x \in \mathbb{C} \setminus \left(-\infty, 0\right) \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \setminus \left(-\infty, 0\right) \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; \left(x \ne 0 \;\mathbin{\operatorname{or}}\; y \ne 0\right)
Definitions:
Fungrim symbol | Notation | Short description |
---|---|---|
CarlsonRD | Degenerate Carlson symmetric elliptic integral of the third kind | |
Integral | Integral | |
Pow | Power | |
Infinity | Positive infinity | |
CC | Complex numbers | |
OpenInterval | Open interval | |
OpenClosedInterval | Open-closed interval |
Source code for this entry:
Entry(ID("944a14"), Formula(Equal(CarlsonRD(x, y, z), Mul(Div(3, 2), Integral(Div(1, Mul(Mul(Add(t, x), Add(t, y)), Pow(Add(t, z), Div(3, 2)))), For(t, 0, Infinity))))), Variables(x, y, z), Assumptions(And(Element(x, SetMinus(CC, OpenInterval(Neg(Infinity), 0))), Element(y, SetMinus(CC, OpenInterval(Neg(Infinity), 0))), Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Or(NotEqual(x, 0), NotEqual(y, 0)))))