Assumptions:
TeX:
\int_{0}^{\infty} {t}^{s - 1} \theta_{2}\!\left(0 , i {t}^{2}\right) \, dt = \left({2}^{s} - 1\right) {\pi}^{-s / 2} \Gamma\!\left(\frac{s}{2}\right) \zeta\!\left(s\right)
s \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(s) > 2Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| Integral | Integral | |
| Pow | Power | |
| JacobiTheta | Jacobi theta function | |
| ConstI | Imaginary unit | |
| Infinity | Positive infinity | |
| Pi | The constant pi (3.14...) | |
| Gamma | Gamma function | |
| RiemannZeta | Riemann zeta function | |
| CC | Complex numbers | |
| Re | Real part |
Source code for this entry:
Entry(ID("9376ec"),
Formula(Equal(Integral(Mul(Pow(t, Sub(s, 1)), JacobiTheta(2, 0, Mul(ConstI, Pow(t, 2)))), For(t, 0, Infinity)), Mul(Mul(Mul(Sub(Pow(2, s), 1), Pow(Pi, Neg(Div(s, 2)))), Gamma(Div(s, 2))), RiemannZeta(s)))),
Variables(s),
Assumptions(And(Element(s, CC), Greater(Re(s), 2))))