Fungrim home page

Fungrim entry: 935b2f

abezdz=ebea\int_{a}^{b} {e}^{z} \, dz = {e}^{b} - {e}^{a}
Assumptions:aC  and  bCa \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C}
\int_{a}^{b} {e}^{z} \, dz = {e}^{b} - {e}^{a}

a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C}
Fungrim symbol Notation Short description
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Expez{e}^{z} Exponential function
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(Integral(Exp(z), For(z, a, b)), Sub(Exp(b), Exp(a)))),
    Variables(a, b),
    Assumptions(And(Element(a, CC), Element(b, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC