Assumptions:
TeX:
\left|\Gamma(z)\right| \ge {\left(2 \pi\right)}^{1 / 2} \left|{z}^{z - 1 / 2} {e}^{-z}\right| \exp\!\left(-\frac{1}{6 \left|z\right|}\right)
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) \ge 0 \;\mathbin{\operatorname{and}}\; z \ne 0Definitions:
| Fungrim symbol | Notation | Short description | 
|---|---|---|
| Abs | Absolute value | |
| Gamma | Gamma function | |
| Pow | Power | |
| Pi | The constant pi (3.14...) | |
| Exp | Exponential function | |
| CC | Complex numbers | |
| Re | Real part | 
Source code for this entry:
Entry(ID("931d89"),
    Formula(GreaterEqual(Abs(Gamma(z)), Mul(Mul(Pow(Mul(2, Pi), Div(1, 2)), Abs(Mul(Pow(z, Sub(z, Div(1, 2))), Exp(Neg(z))))), Exp(Neg(Div(1, Mul(6, Abs(z)))))))),
    Variables(z),
    Assumptions(And(Element(z, CC), GreaterEqual(Re(z), 0), NotEqual(z, 0))))