Assumptions:
TeX:
\theta_{4}\!\left(2 z , \tau\right) = \frac{\theta_{1}^{2}\!\left(z, \tau\right) \theta_{3}^{2}\!\left(z, \tau\right) + \theta_{2}^{2}\!\left(z, \tau\right) \theta_{4}^{2}\!\left(z, \tau\right)}{\theta_{4}\!\left(0 , \tau\right) \theta_{2}^{2}\!\left(0, \tau\right)}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| JacobiTheta | Jacobi theta function | |
| Pow | Power | |
| CC | Complex numbers | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("931201"),
Formula(Equal(JacobiTheta(4, Mul(2, z), tau), Div(Add(Mul(Pow(JacobiTheta(1, z, tau), 2), Pow(JacobiTheta(3, z, tau), 2)), Mul(Pow(JacobiTheta(2, z, tau), 2), Pow(JacobiTheta(4, z, tau), 2))), Mul(JacobiTheta(4, 0, tau), Pow(JacobiTheta(2, 0, tau), 2))))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH))))