Fungrim home page

Fungrim entry: 925fdf

(1z2)ddzPn ⁣(z)+nzPn ⁣(z)nPn1 ⁣(z)=0\left(1 - {z}^{2}\right) \frac{d}{d z}\, P_{n}\!\left(z\right) + n z P_{n}\!\left(z\right) - n P_{n - 1}\!\left(z\right) = 0
Assumptions:nZ1n \in \mathbb{Z}_{\ge 1}
Alternative assumptions:zCz \in \mathbb{C}
TeX:
\left(1 - {z}^{2}\right) \frac{d}{d z}\, P_{n}\!\left(z\right) + n z P_{n}\!\left(z\right) - n P_{n - 1}\!\left(z\right) = 0

n \in \mathbb{Z}_{\ge 1}

z \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
Powab{a}^{b} Power
Derivativeddzf ⁣(z)\frac{d}{d z}\, f\!\left(z\right) Derivative
LegendrePolynomialPn ⁣(z)P_{n}\!\left(z\right) Legendre polynomial
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("925fdf"),
    Formula(Equal(Sub(Add(Mul(Sub(1, Pow(z, 2)), Derivative(LegendrePolynomial(n, z), Tuple(z, z, 1))), Mul(Mul(n, z), LegendrePolynomial(n, z))), Mul(n, LegendrePolynomial(Sub(n, 1), z))), 0)),
    Variables(n, z),
    Assumptions(And(Element(n, ZZGreaterEqual(1))), Element(z, CC)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-06-18 07:49:59.356594 UTC